Антибиотики проникающие через гематоэнцефалический барьер

Гематоэнцефалический барьер (гемато-энцефалический барьер, ГЭБ) (от др.-греч. αἷμα, род. п. αἵματος — «кровь» и др.-греч. ἐγκέφαλος — «головной мозг») — физиологический гистогематический барьер между кровеносной системой и центральной нервной системой. ГЭБ имеют все позвоночные.

Дайджест — сентябрь 2018

Новости

Точное воздействие на микроструктуры мозга

Белок BACE1 и ВИЧ-ассоциированные нейрокогнитивные расстройства

ВОЗ опубликовала МКБ 11

Пересадка «памяти»

Мозг перестраивается в зависимости от обстоятельств

Очки для борьбы с рассеянным склерозом

Статьи 

Содержание β-амилоида в плазме, церебральная атрофия и риск деменции

Аутоантитела против поверхностных белков нейронов при геморрагическом инсульте

Ольфакторная дисфункция при боковом амиотрофическом склерозе

Факторы роста эндотелия сосудов при БА и сосудистой деменции

Мультимодальные исследования головного мозга

Тремор подбородка — проявление сосудистого паркинсонизма? Клинический случай

Мероприятия

Юбилейный конгресс с международным участием XX «Давиденковские чтения»

Физиология — как работает ГЭБ

Мозговой барьер – это не отдельный орган тела, а совокупность различных анатомических составляющих. Эти составляющие исполняют роль преграды и обладают другими полезными свойствами. Мозговые капилляры – первые компоненты, входящие в структуру этого своеобразного преграждения. Главная задача мозговых капилляров – это доставка крови непосредственно к мозгу человека. Через стенки клеток в мозг проникает всё необходимое питание, а продукты обмена, наоборот, выводятся. Процесс этот происходит непрерывно. Но только не все вещества, находящиеся в крови, могут проникнуть сквозь эти стенки.

Мозговые капилляры – это своего рода первоначальная оборонительная линия. Для некоторых веществ она проходима, а для остальных – полупроницаема или совершенно непроходима. Структура капилляров, точнее, их внутренней прослойки такова, что разнообразные компоненты перемещаются из крови в ликвор сквозь щёлочки между клетками, а также сквозь тончайшие зоны этих клеток. Причём стенки капилляров не обладают такими порами, как клетки иных органов. Эти элементы попросту нагромождаются друг на дружку. Места стыковок между ними заслонены специальными пластинами. Щёлочки между клетками слишком узенькие. Передвижение жидкости из капилляров в нервную ткань происходит сквозь их стенки.

Читайте также:  Миоглобинурия лошадей: причины, симптомы, лечение

Структура клеток капилляров имеет некоторые особенности. Клетки состоят из набора митохондрий, а это является признаком о происходящих в них энергетических процессах. В капиллярных клетках слишком мало вакуолей, в особенности в прилегающей к просвету капилляра стороне. Но на рубеже с нервной материей их количество намного выше. А это свидетельствует о том, что пропускаемость капилляра по направлению из кровеносной системы к тканям мозга намного ниже, чем в противоположной направленности.

Важную роль в реализации преграждающей задачи капилляров играет находящаяся под покровом эндотелиальных элементов очень стойкая мембрана с прослойкой гликокаликса. А составляющие эту прослойку компоненты создают своего рода сеть, которая является ещё одним преграждением для молекул разных компонентов. Капилляры мозга имеют ферменты, которые снижают активность некоторых химических компонентов, перемещающихся из крови в ткань человеческого мозга. Но одних капилляров мало для осуществления заградительной задачи. Вторая черта преграждений располагается между капиллярами и нейронами. В этом месте природой создано переплетение астроцитов с их отростками и образование ещё одного защитного слоя – нейроглии.

Покрывается почти весь поверхностный слой мозговых капилляров благодаря присосковым ножкам астроцитов. Они также могут расширять просвет капилляра, или, наоборот, его уменьшать. С их помощью происходит питание нейронов. Присосковые ножки вытягивают из крови нужные нейронам питательные компоненты, а обратно выводят отработанные продукты. Но естественная преграда состоит не только лишь из нейроглии. Препятствующими свойствами характеризуются обволакивающие мозг мягкие оболочки, а также сосудистые переплетения его боковых желудочков. Пропускаемость сосудистых переплетений, вернее, их капилляров, намного выше, чем мозговых капилляров. А щели между их клетками гораздо шире, но они замкнуты очень прочными контактами. Именно здесь и находится третья ступень ГЭБ.

Физиология — как работает ГЭБ

Мозговой заслон не только бережёт мозг от посторонних и ядовитых компонентов, имеющихся в крови, но и стабилизирует состав питательной среды, в которой находятся нервные клетки.

Читайте также:  Грибковый менингит у взрослых и детей

Нужные для жизнедеятельности компоненты мозг получает благодаря присосковым ножкам клеток, а также через ликвор. В мозге имеются внеклеточные участки. А на дне микробороздок мозга есть мельчайшие проходы, которые открываются в межклеточные участки. Благодаря ним питательная жидкость прмщатся в мозг и служит питанием для нейронов.

Есть 2 способа питания мозга: благодаря спинномозговой жидкости; сквозь капиллярные стенки.

У здорового человека основным путём попадания компонентов в нервные ткани является гематогенный, а ликворный маршрут – дополнительный. Каким компонентам перемещаться в мозг, а каким нет, решает ГЭБ.

Гематоликворный барьер

Кроме гематоэнцефалического барьера существует также гематоликворный, который ограничивает центральную нервную систему от кровеносного русла. Он образован эпителиальными клетками с плотными контактами выстилающими сосудистое сплетение желудочков мозга. Гематоликворный барьер также имеет свою роль в поддержании гомеостаза мозга. Через него из крови в омывающую мозг спинномозговую жидкость поступают витамины, нуклеотиды и глюкоза. Общий вклад гематоликворного барьера в процессы обмена между мозгом и кровью невелик. Суммарная поверхность гематоликворного барьера сосудистых сплетений желудочков мозга приблизительно в 5000 раз меньше в сравнении с площадью гематоэнцефалического.

Кроме гематоэнцефалического и гематоликворного барьеров в организме человека существуют гематоплацентарный, гематотестикулярный, гематоклубочковый, гематоретинальный, гематотимусный и гематолёгочный барьеры.

Нарушения кровообращения головного мозга (ишемия)

Ишемия — это ослабление кровообращения в органе или участке органа вследствие уменьшения притока крови, приводящее к дефекту кровоснабжения тканей. Реакция центральной нервной системы на ишемию выражается в возбуждении циркуляторных центров продолговатого мозга, сопровождающемся в основном сужением сосудов. Нарушения мозгового кровообращения могут быть общего (болезни сердца и др.) и местного (ишемия и др.) характера. При этом могут возникать обратимые и необратимые изменения в тканях и клетках головного мозга или отдельных его участках. При дефиците кислорода нарушается окислительное фосфорилирование, а следовательно, и синтез АТФ. Происходящее повреждение клеточной мембраны является критическим моментом для развития необратимых (летальных) изменений в клетке. Значительное повышение уровня кальция в цитоплазме является одной из основных причин биохимических и морфологических изменений, приводящих к гибели клетки.

Читайте также:  Лицевой нерв — анатомия, строение и немного о недугах

Патологические изменения мякотного нервного волокна белого вещества мозга складывается из изменений двух его основных элементов — миелиновой оболочки и осевого цилиндра. Независимо от причины перерыва нервного волокна в его периферической части развиваются изменения, определяемые как перерождение Валлера.

При выраженной степени ишемии происходит коагуляционный некроз нейрона (нервной клетки). Аноксическое (или гомогенизирующее) изменение нейрона близко к ишемическому, так как в его основе также лежат процессы коагуляции клетки. Гибель нейронов головного мозга часто сопровождает процесс нейронофагии. При этом происходит внедрение в нервную клетку лейкоцитов или глиоцитов, сопровождающееся процессами фагоцитоза.

Циркуляторная ишемическая гипоксия наблюдается при ишемии. Она бывает острой и хронической. Ишемия может приводить к гибели отдельных нейронов или группы нейронов (неполный некроз) или к развитию инфаркта отдельных участков мозговой ткани (полный некроз). Характер и тяжесть этих патологических изменений находится в прямой зависимости от величины, длительности и локализации нарушения мозгового кровообращения.

Компенсаторно-приспособительные процессы в головном мозге слабо выражены. Очень ограничены процессы регенерации различных тканей головного мозга. Эта особенность сильно усугубляет тяжесть, нарушения кровообращения тканей мозга. Нервные клетки и их аксоны не регенерируются. Сепаративные процессы несовершенны, происходят с участием глии и мезенхимальных элементов. Приспособительные и компенсаторные процессы в головном мозге осуществляются не столько за счет восстановления нарушенных структур, сколько при помощи различных компенсаторных функциональных изменений.

Гематоликворный барьер

Кроме гематоэнцефалического барьера существует также гематоликворный барьер. Он располагается на границе между кровеносными сосудами и спинно-мозговой жидкостью (ликвором). Циркулируя в желудочках мозга, мозговая жидкость поддерживает трофические и обменные процессы между кровью и мозгом, и выделение продуктов его метаболизма. Гематоликворный барьер несёт защитную функцию и поддерживает баланс ЦНС. Он пропускает только крохотные вещества, необходимые спинно-мозговой жидкости, таким образом влияя на их синтез.

Берег жизни - медицинский портал о здоровье